

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-144818

A Generic Scheduling
Simulator for High
Performance Parallel
Computers

A. B. Yoo, G. S. Choi, M. A. Jette

This article was submitted to Los Alamos Computer Science Institute
Symposium, Santa Fe, NM
October 15 - 18, 2001

August 1, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

A Generic Scheduling Simulator for High Performance
Parallel Computers*

Andy B. YOO1,Gyu Sang Choi2 and Morris A. Jettel

1Lawrence Livermore National Laboratory
Livermore, CA 94551

e-mail: {yoo2 I jettel }@lllnl.gov

1 Statement of Problem

It is well known that efficient job scheduling plays
a crucial role in achieving high system utilization
in large-scale high performance computing envi-
ronments. A good scheduling algorithm should
schedule jobs to achieve high system utilization
while satisfying various user demands in an equi-
table fashion. Designing such a scheduling alg~
rithm is a non-trivial task even in a static envi-
ronment. In practice, the computing environment
and workload are constantly changing. There are
several reasons for this:

First, the computing platforms constantly
evolve as the technology advances. For example,
the availability of relatively powerful commodity
off-the-shelf (COTS) components at steadily di-
minishing prices have made it feasible to construct
ever larger massively parallel computers in recent
years [1, 4]. Second, the workload imposed on the
system also changes constantly. The rapidly in-
creasing compute resources have provided many
applications developers with the opportunity to
radically alter program characteristics and take
advantage of these additional resources= New de-
velopments in softwme technology may also trig-
ger changes in user applications. Finally, politi-
cal climate change may alter user priorities or the

*This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-
7405-Eng48.

2Dept of Computer Science and Engineering
Penn State University

University Park, PA 16802
e-mail: gchoi@cse.psu.edu

mission of the organization.
System designers in such dynamic environments

must be able to accurately forecast the effect of
changes in the hardware, software, and/or policies
under consideration. If the environmental changes
are significant, one must also reassess scheduling
algorithms. Simulation has frequently been relied
upon for this analysis, because other methods such
as analytical modeling or actual measurements are
usually too diilicult or costly. A drawback of the
simulation approach, however, is that developing
a simulator is a time-consuming process. Fur-
thermore, an existing simulator cannot be easily
adapted to a new environment.

In this research, we attempt to develop a
generic job-scheduling simulator, which facilitates
the evaluation of different scheduling algorithms
in various computing environments. The following
are our design objectives for this generic simula-
tor.

1.

2.

3.

4.

Accept descriptions of varied workloads for a
wide range of computing environments.

Provide an easy-to-use interface for descrip
tion of the scheduling policies being evalu-
ated.

Accurately calculate the overhead induced by
various scheduling algorithms.

Accurately model a variety of machine archi-
tectures.

A
subsystem Nod.

Wide T&-
.W,de Based Job.

--LuJ G

I

Based

v .
s*- .

W,de
--ulJ

n
a...0

Figure 1: Queuing network representation of the
M2 framework.

2 Design and Implementation

Our generic simulator is based on the Multitask-
ing and Multiprogramming (M2) kmework [6].
As shown in Figure 1, the M2 represents a closed-
end queuing network and consists of three lev-
els of queues: system-, subsystem-, and node-
level. The system-level queue would typically
represent all batch jobs to be executed on an
assortment of computers or cluster of comput-
ers. The subsystem- level queue would typically
represent cluster-level scheduling such as IBM’s
LoadLeveler [5] assigning tasks of a parallel job
to specific nodes in the cluster. The node-level
queue would represent the tasks being assigned to
compute nodes. There can be a variety of distinct
subsystem and node-level queues.

A job scheduling algorithm is specified by three
parameters: scheduling unit (job- or task-based)
which defines scheduling granularity, scheduling
width (system-, subsystem, or node-wide) that
represents the queue level to which a preempted
scheduling unit returns, and partitioning mecha-
nism (static or dynamic partitioning) that speci-
fies how the system is partitioned to allocate in-
coming jobs. Using these three parameters, the
M2 framework provides a very powerful tool that
can be used to represent various scheduling al-
gorithms on different computers. An interested
reader should refer to [6] for detailed description
of the M2 framework.

A major drawback of the M2 representation is
its assumption of a first-come first-served (FCFS)
scheduling policy in managing queues in the sys-
tem. This shortcoming makes direct application
of the M2 framework di-flicult in the development

of a generic simulator. In developing this generic
simulator, we have extended the M2 framework for
the users to be able specify different scheduling al-
gorithms for each queue (or a group of queues).

Our generic simulator accepts three input cate-
gories: job characteristics, system characteristics,
and job scheduling information. There is a great
deal of flexibility in specifying job characteristics.
There are predefine attributes such as job inter-
arrival time and job execution time. These may be
augmented with user-defined job attributes, which
may be unique to the system such as resource
demands, user, group (or other specification for
fair-share scheduling), and priority. The distribu-
tions of these attributes can be derived using stan-
dard or user-defined distribution functions. Alter-
nately, one can supply a workload trace, optionally
including user-defined job attributes.

The performance metrics generated by this sim-
ulator are job response time and system utiliza-
tion. Although the current implementation con-
cerns only these two performance parameters, the
simulator can be easily extended to include user-
defined performance metrics. Each performance
parameter is accompanied by its 9570 confidence
interval. Particularly with heavily loaded systems+
longer simulation periods are required to obtain
accurate results. By considering the confidence in-
terval provided by the simulator, users can deter-
mine whether a longer simulation period is needed.

System overhead can vary depending upon the
scheduling algorithm being used. Paging overhead
caused by employing a time-sharing scheduling is
a good example of such an overhead. Another
good example is refreshing a cache when context
switching occurs. Although the overhead induced
by scheduling algorithms has become a critical is-
sue, it has been largely ignored by existing simu-
lators [2, 3]. A novel feature of our generic simula-
tor is its ability to calculate the overhead incurred
by employing specific scheduling algorithms. This
provides both more accurate results overall and a
clear identiilcation of the measured overhead into
its performance report.

A stream of jobs is generated by using the input
generation method defined by the user. The sim-
ulation continues until the predefine number of

jobs finish their execution and depart the system.
When a job completes execution, two performance
parameters are updated.

The core of our generic simulator lies in its
mechanism to manipulate the network of queues.
When a job first arrives at the system, it joins the
system queue. When the job is assigned to a sub-
system, it enters an appropriate subsystem queue.
The subsystem queues can be static or generated
dynamically depending on the given partitioning
mechanism. Finally, the tasks of the job are as-
signed to a node-level queue, which manages the
processors, cache, and memory within a node.

User specifies a set of scheduling algorithms for
each queue in the system. The set of schedul-
ing algorithms for a queue consists of a primaxy
scheduling algorithm and secondary scheduling al-
gorithms. The primary scheduling algorithm is in-
voked on certain events like job arrivals and depar-
tures by default. For each secondary scheduling
algorithm, a distribution function, which is used
to calculate the interval between (user-defined)
events, is specified. The secondary scheduling al-
gorithms are used to capture the occurrence of cer-
tain events that are specific to the system being
simulated. That is, the secondary scheduling algo-
rithms are used to model scheduling activities that
have to be performed when certain events occur.
When a scheduling (primary or secondary) algo-
rithm is invoked, the jobs or tasks that are in the
queue with which the scheduling algorithm is as-
sociated are rearranged. This design allows the
users to simulate various scheduling algorithms
under varying conditions easily. For example, a
secondary scheduling algorithm could be used to
simulate expedited work, system failures, sched-
uled maintenance periods, etc.

A user writes a scheduling algorithm as a C
function and binds it to the queues that the al-
gorithm is defined for. To facilitate this process,
we provide users with a set of application pro-
gramming interfaces (APIs). These APIs are cat-
egorized into two classes: attribute retrieval and
queue management APIs. The attribute retrieval
APIs allow a user to retrieve attribute values of
a job. Users use this information to prioritize
and order the jobs (or tasks) in the correspond-

ing queue. The queue management APIs can be
used to change the order of objects in a queue. Us-
ing these APIs, the users can tleely describe any
scheduling algorithms witbout knowing the imple-
mentation details of the simulator. Typically each
function is a small program, but the opportunity
exists to define very complex algorithms if so de-
sired.

We have validated our simulator by compar-
ing the performance measurements obtained horn
the simulator for various loads with those from
M/M/l and M/M/10 queuing models. The results
are plotted in Figure 2. In these experiments, we
assumed that all of the nodes are identical and
incoming jobs require a single node. The results
are quite encouraging. The margin of error in-
troduced by our simulator is within 0.2% of the
results from the queuing models. We plan to con-
duct more validation tests for different workloads
and scheduling algorithms in the future. We also
plan to further study on the overheads caused by
different scheduling algorithms and its effect on
overall system performance.

In summary, we have developed a generic
scheduling simulator for high performance parallel
computers. This generic simulator supports stan-
dard and user-defined job attributes and gener-
ates the job attribute values horn different input
sources, allowing users to model a wide range of
workloads, and produces performance parameters
with reliabilityy measures. All overheads caused by
scheduling algorithms are considered in measur-
ing the performance parameters. The simulator
simulates a queuing network to which users can
bound a specific scheduling algorithm written as a
C function. A set of APIs is provided for the users
to facilitate describing the scheduling algorithms.
With these features, this simulator can accurately
simulate any scheduling algorithms under various
workloads and computing platforms. The simula-
tor does not currently model dynamic events like
message passing between tasks closely, but we plan
to include this crucial functionality into our simu-
lator in the future.

References

[1] ASCI Project. WWW.lanl. gov/asci.

2000.0
I

~<

d~ Mean Job Wait Time (M/M/l)

/1

)1
~ Mean Job Response 7ime (MIMII)

:
1500.0 f Mean Job Wait Time (Simulation)

~ - Mean Job Response Time (Simulation)
/1

F /
.—
+

I,Y*, J
0.0 -
0.0 20.0 40.0 60.0 80.0 100.0

System Load (%)

(a) M/M/l queuing model

600.0

~ Mean Job Wait Time (M/M/m)

s %0 Mean Job Response 7ime (MIMlm)
:

H MeanJob Wait Time (Simulation)

: 400.0,~ M Mean Job Response lime (Simulation)

/

1200” .dJ
0.0
60.0 70.0 80.0 90.0 1(

System Load (%)

1

).0

(b) M/M/m queuing model

the sim-Figure 2: The comparison of results from
ulator and queuing models. Mean job inter-arrivaJ
times are fixed to 100 seconds and 10 seconds
for I%?/ill/l and AZ/iW/m queuing models, respec-
tively. Mean job service time is the mean job inter-
arrival rate divided by a given system load.

[2] H. Bodhanwala, L. M. Campos, C. Chai,
C. Decoro, K. Fowler, P. Franck, H. Nguyen,
N. Patel, I. Scherson, and F. Silva. A General
Purpose Discrete Event Simulator. In PTOC. In-

ternational Symposium on Performance Eval-
uation of Computer and Telecommunication
Systems, July 2001.

[3] H. Casanova. Simgrid: a Toolkit for the Simu-
lation of Application Scheduling. In Proc. In-
ternational Symposium on Cluster Computing
and the Grid, pages 430-437, lMay 2001.

[a] Cplant. http: //www. cs. sandia. gov/cplant.

[5] IBM Corporation. LoadLeveler’s User Guide,
Release 2.1.

[6] C. Yu. Processor Management Policies for
Multiprocessors. PhD thesis, Dept. of Com-
puer Science and Engineering, Pennsylvania
State University, 1994.

